

VOTANO 100

Voltage transformer testing, calibration and assessment

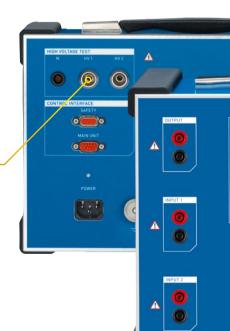
Sophisticated testing of inductive and capacitive voltage transformers

VOTANO 100 at a glance:

VOTANO 100 is the first portable device (15 kg/33 lbs) which offers highly accurate voltage transformer tests. This allows to use VOTANO 100 not only for electrical performance checks, but also for class verification and calibration.

It performs quick tests of all kinds of inductive voltage* transformers (VTs) and capacitive voltage transformers (CVTs) for both protection and metering purposes.

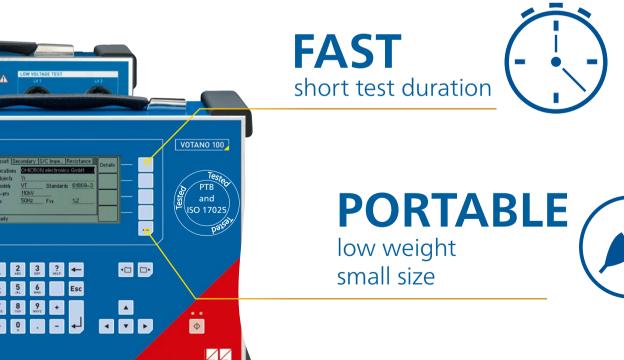
Its lightweight design makes it ideal for on-site tests and calibration tasks in power system grids. As a manufacturer or testing lab you can use VOTANO 100 in your production facilities and test/development labs.


VOTANO 100 is supplied with the separate voltage booster VBO2. This 4kV amplifier provides the necessary test voltage during the ratio measurement. Its integrated switchbox automatically switches between the necessary test sequences.

How VOTANO 100 works

- > Uses a well-established, model-based testing method
- The method can be compared to that used by OMICRON's CT Analyzer
- > Injects low test signals into the secondary side of a VT/CVT
- > Determines a VT's/CVT's equivalent circuit parameters
- > Identifies all relevant VT/CVT performance parameters
- Displays all relevant VT/CVT parameters and its accuracy at different currents and burdens and with loaded and unloaded secondary windings
- > Evaluates the VT/CVT according to the selected standard

* In some countries, inductive voltage transformers (VTs) may also be referred to as potential transformers (PTs). This document will use the term voltage transformer.

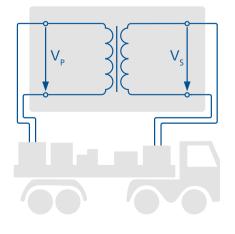

Features for voltage transformer testing (VT/CVT)

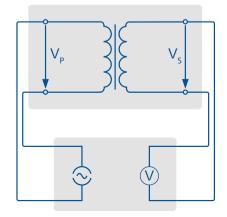
- > Check the electrical performance of VTs and CVTs
- > Check the condition of VTs and CVTs
- > Basic condition assessment for CVTs
- > Tests such as ratio, phase, polarity, capacitive ratio

OMICRON

Features for voltage transformer accuracy verification and calibration (VT/CVT)

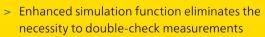
- > Check the electrical performance of VTs and CVTs
- > Check the condition of VTs and CVTs
- > Basic condition assessment for CVTs
- > Tests such as ratio, phase, polarity, capacitive ratio
- > Verify accuracy class according to IEC, IEEE
- > Test of VTs/CVTs up to rated voltages and voltage factors up to 1.9
- > Automatic class assessment
- > Accuracy classes up to 0.1 for VTs and 0.2 for CVTs

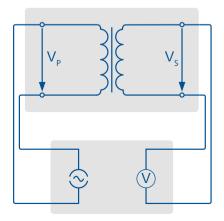

Accuracy and mobility for on-site VT/CVT testing

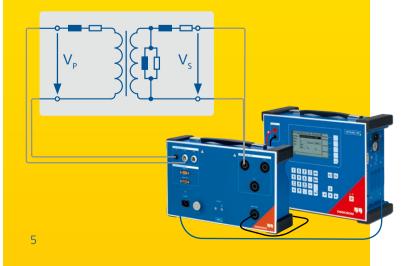

Characteristics for the ideal on-site VT/CVT testing device

- > Safety: The dangerous part of the test taking place under high voltages should be kept as short as possible.
- > Accuracy: Accuracy level should allow a calibration of metering VTs/CVTs with up to class 0.1.
- > Mobility: It should be compact and lightweight enough to be carried by one person.
- Handling: It should offer fast and automated tests and assessment to the respective IEC and IEEE standards. The setup and testing effort should be kept at a minimum in order to reduce time and costs. All relevant parameters should be measured in one test cycle and without the need for any further equipment (such as a burden box) and for rewiring.

	Primary nominal-voltage injection	Primary high-voltage injection
Safety	 Very high voltages of up to 1.9 times nominal voltage 	> Typically voltage levels of up to 10 kV are used
Accuracy	 > Very high accuracy > Many testing components resulting in a lot of calibration work and wiring 	 Not sufficient for calibration Sensitive to coupling from nearby live cables (typical measurement at mains frequency)
Mobility	 Approximately half a ton of equipment (controlled voltage transformer, high-voltage transformer, heavy cables, booster, burden box, etc.) 	 More than 30 kg / 66 lbs (not including additional equipment, e.g. external burden box)
Handling	 A manual assessment of the results as per applicable standards is possible Complex test setup: setup and testing requires several people 	 Class compliance of the voltage transformers with higher rating can only be estimated For the single ratio test only a simplified test set-up and process is necessary


Principle





Primary voltage injection	Model-based VT/CVT testing
> Typically voltage levels of up to 100 V are used	 Measuring voltages of up to 4kV are used Local isolation between high voltage and measuring equipment
Not suitable for calibrationOnly sufficient for an estimation of the ratio	 Sufficient for measurement and calibration of class 0.1 metering VTs/CVTs Measuring signals away from the mains frequency guarantees excellent noise suppression
 > Typically less than 10 kg / 22 lbs > Ideal for handling on site 	 > 15 kg / 33 lbs > Ideal for handling on site
 Class compliance of the voltage transformer can only be roughly estimated Comparatively simple and easy test setup. 	 Software-guided and automated test procedure (< 15 min) Automated assessment (as per applicable standards) and reporting function

> Comparatively simple and easy test setup

VOTANO 100's features

		Powe	r	Voltage ratio error in % at % of rated voltage						
	VA	cos Phi	Burden in %	2%	5%	80%	100%	120%		
Ratio loaded	15		100	0.088%	0.123%	0.177%	0.177%	0.176%		
Ratio unloaded	3.75	0.8	25	0.033%	0.362%	0.415%	0.417%	0.415%		
Ph. angle unloaded	15	0.8	100	4.825 min.	4.287 min.	3.180 min.	3.186 min.	3.245 min.		
Ph. a unlo	3.75	0.8	25	2.802 min.	2.263 min.	1.155 min.	1.161 min.	1.220 min.		
Ratio loaded	15	0.8	100	-0.57%	-0.54%	-0.482%	-0.481%	-0.483%		
Rat Ioae	3.75	0.8	25	-0.33%	-0.30%	-0.246%	-0.245%	-0.246%		
angle	15	0.0	100	2.320 min.	1.783 min.	0.678 min.	0.683 min.	0.737 min.		
Ph. angl Ioaded	3.75	0.8	25	0.302 min.	-0.235 min.	-1.340 min.	-1.335 min.	-1.300 min.		

Automated assessment of measurement results in compliance with the standards

- > Limit values for automated assessment are set in compliance with the applicable standards (IEC or IEEE)
- Automatic assessment is completed within seconds after the measurement
- > Complete transformer assessment considering;
 - > different burdens of secondary windings under test
 - > different primary voltage values
 - each secondary winding under load and no-load conditions (while the others are either under load or without load)

initially 2 las	init a list & feet only				
	V tel collipsiden				
1.	Content Contents		Neufaliner		
	Garty Aubla		Type		
	Tatan Kasa Asalan		Land Auritan Convent		
	Face				
	8.0				
	A Aud				
	Annel	St.	C tonici	(BC-40044-0	
	-	122 H H	13-		
	Factoria	N14	10 m	622	R
	kit af set windings	3	The second second	×	
	A window				
	Linin. AM	2	8	(H	
	Loop A VP	Lacik alew			
		(35M	10°+	8.8	
					de batter

Remote control

- > With the PC software you can easily control the whole measuring procedure
- Allows the integration of VOTANO 100 into the automated testing procedures of a production line
- > You can export data into Excel™ or XML format

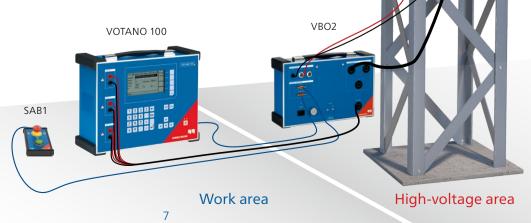
Simulation and re-assessment

Using the measured data of previous tests you can save time and money by;

- reloading existing measurement data into VOTANO 100 at any time for simulation
- > doing later simulations and re-assessment of transformers when the following parameters have changed:
 - > Burdens (individually for each winding)
 - > Nominal voltage factor
 - > Accuracy class of transformer
 - > Primary voltage
- avoiding further on-site measurements to verify whether a change in the burden will influence the transformers' accuracy

Data processing and test reports

- > You can save the test results directly on the Compact Flash Card
- With your PC you can easily generate reports using the Report Function
- > The content and layout of reports can be customized in Excel[™]


					VOT	ANO Test Resul	ts							ON	AICRON
Company name	OMICRON electr	onics GmbH							Ratio e	error / oth	er winding	s not load	ed		
Company address	Oberes Red 1, 6	833 Kisus, Aus	1fa			0,60%									
Order number						0,40%									
N	ameplate data		General t	est information		-	-								
Model		VT	Type	VOTANO1	0	를 0,20%							-		
Rated primary voltage [V]	600	00,00	Serial number	ALIODIV		8	-								
Applied standard	ECO	10044-2	Date/time	2013-07-22, 16:3	k16 AM	\$ 0,00%	-							_	
Rated frequency (Hz)	54	0,00	Valid file			(%) 0,20% 0,00%	obs -	20%	40%	60%	80%	100%	120%	140%	
Fv		1,2				g -0,20%									+ 6m
la-fin Rated	sec. voltage [V]	100		ocation		3									
M-Class 0,5			Company			-0.40%									
iom. Burden [VA]/Cos pl	N 15	8.0.8	Country										_		
2a-2n Rated	I sec. voltage [V]		Station			-0.60%									
M-Class 0,5			Feeder							Upr	[X]				
Nom. Burden [VA]/Cos pl	N 20		Phase [*]												
	sec. voltage [V]		EC-D									ndines not			
M-Class	P-Class								mase displ	lacement /	other wir	ndings not	loaded		
Nom. Burden [VA]/Cos pl				Object		25,00									
	sec. voltage [V]		Manufacturer			20,00									
M-Class	P-Class		Type			- 15.00									
Nom. Burden [VA]/Cos pl			Serial number			E 10.00									
	sec. voltage [V]	100													
M-Class n/a		39				E 5,00									
Nom, Burden [VA]Cos pl	N 60	8.00												_	
						a -5,00	06	20%	40%	60%	80%	100%	120%	140%	
Winding under test	Winding resista		Ratio text/8100% of		olarity	\$ -10.00									+ En
	whoing resists				Ch										
32-31		0,3905 0				15,00									
2a-2n 3a-3n		0,315 D	Δφ: 2,3404 min tr Δφ: c		CR	-20,00	-								
10-31			ay c An r			-25.00	L								
62-61		0.2172.0			08					Upr	(%)				

Safe VT and CVT testing

- > Enhanced security through software-guided measuring procedure via GUI or PC software
- > Wiring diagrams for each single measurement
- > The voltage booster VBO2 automatically switches through all tests. HV and LV wiring only needs to be done once
- > Acoustic warnings sound before and during (optional) measurements with higher voltages
- > Automatic plausibility and wiring check before critical measurements
- > VBO2 offers additional safety circuitry through surge arrestors for the measuring channels
- > Integrated system check to ensure VBO2 is correctly grounded
- > If reconnections are necessary during the measurement the system can be locked for security reasons
- > Safety box SAB1 and VBO2 indicate operating state and safe state of test setup via red and green LEDs
- > Emergency stop button for additional safety interruptions

Additional C-Divider test option (for CVTs)_

- > For a detailed test of your CVTs' capacitor stack
- Smart method for accurate determination of individual C₁ and C₂ values, the overall capacitance C_r, and the capacitive ratio K_c.
- Combines two different primary short-circuit tests on the capacitor stack in a new measurement method
- > Stack values can be determined for all CVT designs, even when no ground switch is available.

Specifications and software packages

Technical specifications of VOTANO 100

Inductive and capacitive coupled voltage transformers

Ratio test (basic testing	g)
Typical accuracy for	
Ratio measurements	Phase measurements
0.02 %	0.7 min

Winding resistance measurement

Resolution	Guaranteed accuracy	Typical accuracy
1 mΩ	0.1 % + 1 mΩ	0.05%

Inductive voltage transformers

Ratio measurement

Voltage level*	Typical accuracy*1
0.6 kV 35 kV	<u>≤</u> 0.03%
> 35 kV 123 kV	<u>≤</u> 0.05%
> 123 kV	<u>≤</u> 0.08 %

Phase displacement measurement

Voltage level*	Typical accuracy*1
0.6 kV 35 kV	2 min
> 35 kV 123 kV	3 min
> 123 kV	4 min

Capacitive coupled voltage transformers

Ratio meas	surement
------------	----------

Voltage level*	Typical accuracy*1
> 30 kV 100 kV	0.05 %
> 100 kV 500 kV	0.07 %
> 500 kV	0.09%

Phase displacement measurement				
Voltage level*	Typical accuracy*1			
> 30 kV 100 kV	2 min			
> 100 kV 500 kV	3 min			
> 500 kV	4min			

Technical specifications of VBO2 voltage booster

Physical dimensions

Size (W \times H \times D)	358 × 230 × 114 mm / 14.1 × 9.1 × 4.4 in
Weight	7.5 kg / 16.5 lbs (without accessories)

* network voltage level (line-to-line voltage)

*1 accuracy valid for nominal voltages

Input voltage	100 V _{AC} 240 V _{AC}
Permissible input voltage	85 V _{AC} 264 V _{AC}
Frequency	50 Hz / 60 Hz
Permissible frequency	45 Hz 65 Hz
Input power	500VA
Connection	Standard AC socket as per IEC 60320

Output

Power supply

Output voltage	0 120 V _{DC} , 0 40 V _{AC}
Output current	0 5 A _{eff} (15 A _{peak})
Output power	0 400 VA _{eff} (1 500 VA _{peak})

Physical dimensions

Size (W \times H \times D)	360 × 285 × 145 mm 9.2 × 7.2 × 3.7 in
Weight	< 8 kg / 17.1 lbs (without accessories)

Environmental conditions

Operating temperature	-10 °C +50 °C / +14 °F +122 °F
Storage temperature	-25°C +70°C / -13°F +158°F
Relative humidity	5% 95%, non-condensing

PC Requirements

Operating system	Windows 10 [™] 32 bit and 64 bit Windows 7 [™] 32 bit and 64 bit
Microsoft Office® versions	2019, 365, 2016, 2013, 2010, 2007 SP2

Environmental conditions

Please see VOTANO 100 parameters.

Features of VOTANO 100 software packages	VT	VT	CVT	СVТ	VT/CVT
	Standard	Advanced	Standard	Advanced	Universal
PC software remote interface					
Simple VT/CVT ratio check					
VT/CVT polarity check					
Measurements for inductive VTs with up to 5 secondary windings			-	_	
Measurements for capacitive VTs with up to 5 secondary windings	_	_			
Measurements for VTs as part of combined VT/CT units with up to 5 secondary windings			-	_	
VT/CVT ratio and phase measurements under load and no-load condition				-	
VT/CVT ratio error and phase displacement measurement in accordance with the standard	_		_		
> Primary voltage levels between 5 % and 190 % of the nominal primary voltage					
> Nominal burden and burden values below (0VA, 25 % and 100 % burden)					
> Other windings under load and no-load condition					
 Customized burden and Total Simultaneous Burden (TSB) 					
Automatic assessment as per applicable standards up to accuracy class \ge 0.1					
> IEC 60044-2 for inductive VTs	_		_	_	
> IEC 60044-5 for capacitive VTs	_	_	_		
> IEC 61869-3 for inductive VTs	-		-	_	
> IEC 61869-5 for capacitive VTs	-	_	-		
> IEEE C57.13 for instrument transformers	-		-	_	
> ANSI C93.1 for capacitive VTs	-	_	-		-
Automatic test and assessment of ground fault winding (open delta)	_		-		
Equivalent circuit parameter determination	_		_	-	-
> VT/CVT excitation curve measurements					
> Winding resistances					
> Leakage reactances					
Subsequent simulation and re-assessment of the VTs/CVTs after modification of	_		_	-	-
> Burden, nominal/rated voltage factor, accuracy class of VT/CVT, primary voltage					
Reloading of saved measuring data into VOTANO 100 for simulation at any time	_		-		
Short-circuit impedance measurements			-		
Burden measurement			-		
C-divider test module for a detailed test of your CVTs' capacitor stack	_	_	_		

Ordering information VOTANO 100

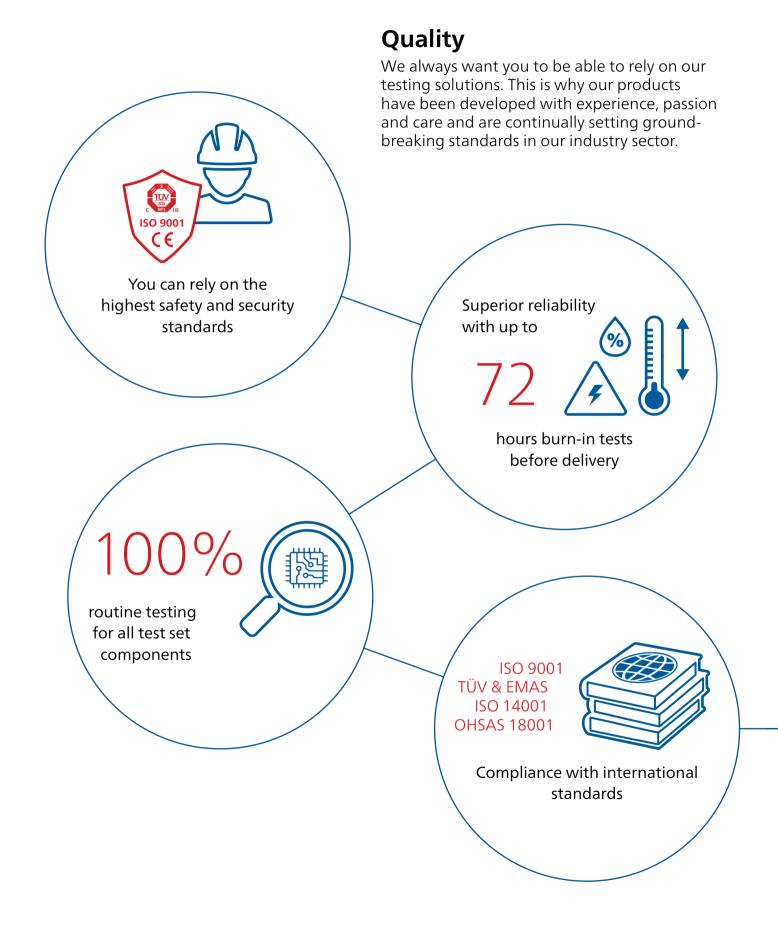
Packages

	Description	Ordering No.
VOTANO 100 Package incl. all cables and accessories	VOTANO 100 device including simple VT/CVT ratio check	P0000747
Available software packages		
VOTANO 100 VT Standard Software Package	Software package for common load and no-load ratio and phase measurements on VTs	P0006578
VOTANO 100 CVT Standard Software Package	Software package for common load and no-load ratio and phase measurements on CVTs	P0006579
VOTANO 100 VT Advanced Software Package	Software package for complete measurements and simulation of VTs up to accuracy class 0.1 with automatic IEC/IEEE class assessment	P0006580
VOTANO 100 CVT Advanced Software Package	Software package for complete measurements and simulation of CVTs up to accuracy class 0.1 with automatic IEC/IEEE class assessment	P0006581
VOTANO 100 VT/CVT Universal Software Package	Software package for complete measurements and simulation of VTs and CVTs up to accuracy class 0.1 with automatic IEC/IEEE class assessment	P0006582

VOTANO 100 Package

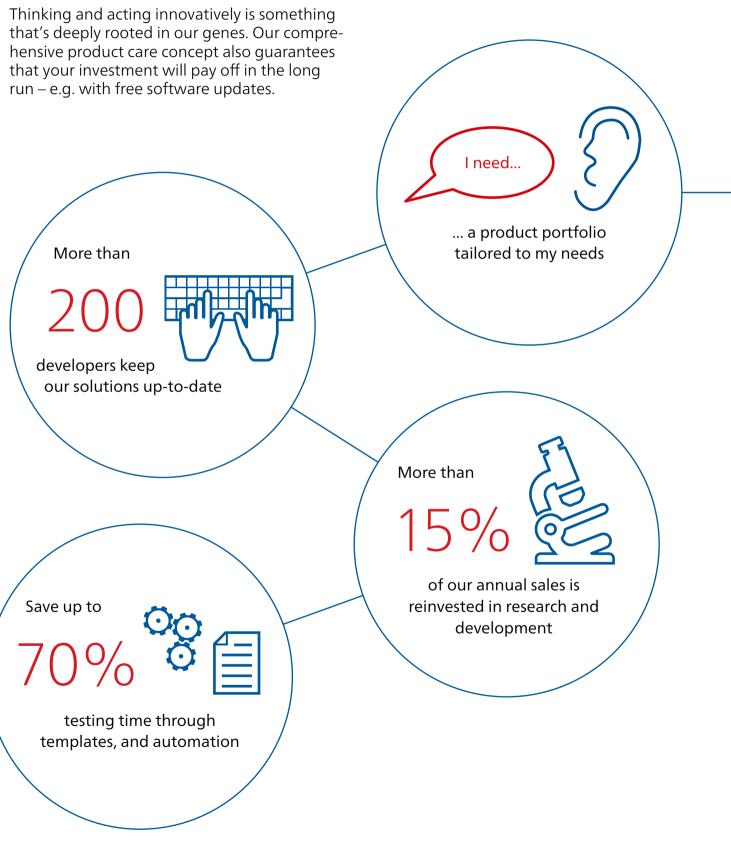
Software Upgrade Options, Licenses and Tools

	Description	Ordering No.
VOTANO 100 VT Standard to Advanced Upgrade Option	Upgrade option for complete measurements and simulation of VTs up to accuracy class 0.1 with automatic IEC/IEEE class assessment	P0006583
VOTANO 100 CVT Standard to Advanced Upgrade Option	Upgrade option for complete measurements and simulation of CVTs up to accuracy class 0.1 with automatic IEC/IEEE class assessment	P0006584
Manufacturer Application Programming Interface License (API; only VT testing functions supported)	Software license for usage of the VOTANO 100 Application Programming Interface (API)	P0006802
VOTANO 100 Calibration Suite (requires VT or CVT Advanced Software Package)	Device-specific license for usage of VOTANO 100 and VBO2 calibration tool	P0006801
VOTANO 100 16.7 Hz Measurement License	Software license for measurement of 16.7 Hz VTs (Central and Northern European railway grids)	P0006803
C-Divider Test	Test module for a detailed test of your CVTs' capacitor stack	P0007483

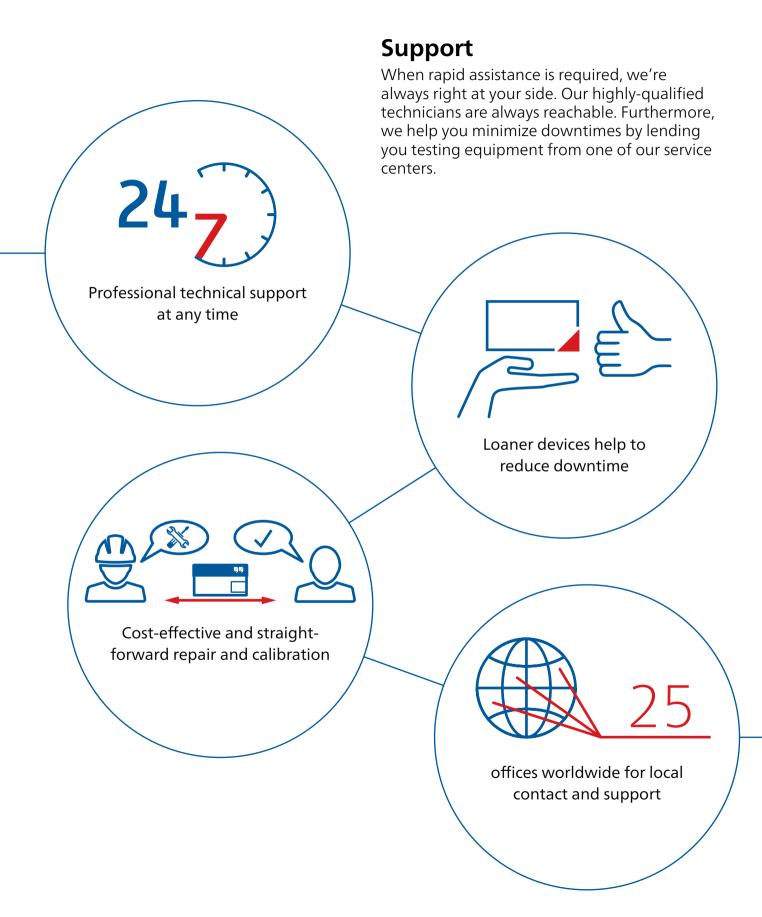

Accessories and Cables

	Description	Ordering No.
Calibration VT	High-precision calibration IVT (0.05% accuracy) for calibration of VOTANO 100 and VBO2 (calibration certificate ISO / IEC 17025 included)	B2208100
VOTANO 100 Cable Package	Additionally available cables / adapters for the connection of several secondary windings and burdens	P0006208

Services


	Description	Ordering No.
Recalibration of Calibration VT	Recommended recalibration of calibration VT every 1-2 years (return shipment included)	P0006037
Calibration of new VOTANO 100 devices	Optional calibration of new VOTANO 100 devices according to IEC17025. Certifies accuracy for VT accuracy class determination and verifies accuracy of low- and high-voltage in- and outputs	P0005953
Recalibration of VOTANO 100 devices in service	Recommended annual recalibration of VOTANO 100 devices in service according to IEC17025. Certifies accuracy for VT accuracy class determination and verifies accuracy of low- and high-voltage in- and outputs (return shipment included)	P0006038

We create customer value through ...



Innovation

We create customer value through ...

Knowledge

We maintain a continuous dialogue with users and experts. Customers can benefit from our expertise with free access to application notes and professional articles. Additionally, the OMICRON Academy offers a wide spectrum of training courses and webinars.

Frequently OMICRON hosted user meetings, seminars and conferences

More than

???

Academy and numerous hands-on trainings per year

to thousands of technical papers and application notes

Extensive expertise in consulting, testing and diagnostics

OMICRON is an international company that works passionately on ideas for making electric power systems safe and reliable. Our pioneering solutions are designed to meet our industry's current and future challenges. We always go the extra mile to empower our customers: we react to their needs, provide extraordinary local support, and share our expertise.

Within the OMICRON group, we research and develop innovative technologies for all fields in electric power systems. When it comes to electrical testing for medium- and high-voltage equipment, protection testing, digital substation testing solutions, and cybersecurity solutions, customers all over the world trust in the accuracy, speed, and quality of our user-friendly solutions.

Founded in 1984, OMICRON draws on their decades of profound expertise in the field of electric power engineering. A dedicated team of more than 900 employees provides solutions with 24/7 support at 25 locations worldwide and serves customers in more than 160 countries.

For more information, additional literature, and detailed contact information of our worldwide offices please visit our website.

© OMICRON L4338, 04 2022 Subject to change without notice.

www.omicronenergy.com

